Biocompatibility of poly(2-alkyl-2-oxazoline) brush surfaces for adherent lung cell lines.
نویسندگان
چکیده
Development of synthetic surfaces that are highly reproducible and biocompatible for in vitro cell culture offers potential for development of improved models for studies of cellular physiology and pathology. They may also be useful in tissue engineering by removal of the need for biologically-derived components such as extracellular matrix proteins. We synthesised four types of 2-alkyl-2-oxazoline polymers ranging from the hydrophilic poly(2-methyl-2-oxazoline) to the hydrophobic poly(2-n-butyl-2-oxazoline). The polymers were terminated using amine-functionalised glass coverslips, enabling the synthetic procedure to be reproducible and scaleable. The polymer-coated glass slides were tested for biocompatibility using human epithelial (16HBE14o-) and fibroblastic (MRC5) cell lines. Differences in adhesion and motility of the two cell types was observed, with the poly(2-isopropyl-2-oxazoline) polymer equally supporting the growth of both cell types, whereas poly(2-n-butyl-2-oxazoline) showed selectivity for fibroblast growth. In summary, 2-alkyl-2-oxazoline polymers may be a useful tool for building in vitro model cell culture models with preferential adhesion of specific cell types.
منابع مشابه
Synthesis, biodistribution and excretion of radiolabeled poly(2-alkyl-2-oxazoline)s.
Here we report on the preparation of well defined water-soluble poly(2-methyl-2-oxazoline) and poly(2-ethyl-2-oxazoline) terminally equipped with a chelator (N,N',N'',N'''-tetraazacylododecane-1,4,7,10-tetraacetic acid (DOTA)) for radionuclide labeling. The tissue distribution and excretion of (111)In-labeled poly(2-alkyl-2-oxazoline)s were studied in mice. We found that the hydrophilic polymer...
متن کاملThermal Properties of Methyl Ester-Containing Poly(2-oxazoline)s
This paper describes the synthesis and thermal properties in solution and bulk of poly(2-alkyl-oxazoline)s (PAOx) containing a methyl ester side chain. Homopolymers of 2-methoxycarbonylethyl-2-oxazoline (MestOx) and 2-methoxycarbonylpropyl-2-oxazoline (C3MestOx), as well as copolymers with 2-ethyl-2-oxazoline (EtOx) and 2-n-propyl-2-oxazoline (nPropOx), with systematic variations in composition...
متن کاملStudy In Vivo Intraocular Biocompatibility of In Situ Gelation Hydrogels: Poly(2-Ethyl Oxazoline)-Block-Poly(ε-Caprolactone)-Block-Poly(2-Ethyl Oxazoline) Copolymer, Matrigel and Pluronic F127
The long term in vivo biocompatibility is an essential feature for the design and development of sustained drug release carriers. In the recent intraocular drug delivery studies, hydrogels were suggested as sustained release carriers. The biocompatibility test for these hydrogels, however, was commonly performed only through in vitro cell culture examination, which is insufficient before the cl...
متن کاملThermoresponsive Interplay of Water Insoluble Poly(2-alkyl-2-oxazoline)s Composition and Supramolecular Host–Guest Interactions
A series of water insoluble poly[(2-ethyl-2-oxazoline)-ran-(2-nonyl-2-oxazoline)] amphiphilic copolymers was synthesized and their solubility properties in the presence of different supramolecular host molecules were investigated. The resulting polymer-cavitand assemblies exhibited a thermoresponsive behavior that could be modulated by variation of the copolymer composition and length. Interest...
متن کاملSynthesis of pH Sensitive Hydrogels Based on Poly Vinyl Alcohol and Poly Acrylic Acid
In this research, hydrogels based on poly vinyl alcohol and poly acrylic acid blend were prepared which were cross-linked by applied thermal conditions. Afterward, effects of time and heating on water uptake were investigated. The highest water uptake value exhibited by the sample that was heated for 20 min. at 110 ºC was about 2129% after 4 days at equilibrium state. Hydrogels exhibited p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biomaterials
دوره 61 شماره
صفحات -
تاریخ انتشار 2015